Химия экстремальных состояний

В отличие от каталитической химии, особенностью которой является химическая активизация молекул реагента, т.е. расслабление исходных химических связей при взаимодействии с их катализатором, химия экстремальных состояний характеризуется энергетической активацией реагента, т.е. подачей энергии извне для полного разрыва исходных связей.

К химии экстремальных состояний относятся плазмохимия и радиационная химия (химия высоких энергий).

В плазмохимических процессах скорость перераспределения химических связей между реагирующими молекулами достигает оптимума, заданного природой: длительность элементарных актов химических превращений приближается в нем к 10-13 сек. при почти полном отсутствии обратимости реакции, тогда как во всех современных заводских реакторах такая скорость из-за обратимости снижается в тысячи и миллионы раз. Поэтому плазмохимические процессы исключительно высокопроизводительны.

Метановый плазмотрон с производительностью 75 тонн ацетилена в сутки имеет длину всего 65 см и диаметр 15 см., по сути, заменяет целый завод. При этом метан в нем при температуре 3000-3500 градусов за одну десятитысячную доли секунды превращается на 80% в ацетилен.

В настоящее время разработаны способы связывания атмосферного азота посредством плазмохимического синтеза оксидов азота, что может быть экономнее аммиачного метода по энергетическим затратам.

Создается плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии.

Плазмохимия позволяет получить такие материалы, которые до сих пор вообще не были известны человеку, например, металлобетон, где в качестве связующего используются сталь, чугун, алюминий. Плазменная технология позволяет путем оплавления частиц горной породы создать прочное сцепление этой породы с металлом, благодаря чему получаемый металлобетон прочнее обычного на сжатие в 10 и на растяжение в 100 раз.

В России разработаны плазмохимические процессы превращения угля в жидкое топливо, устраняющие применение высоких давлений и выбросы серы и золы.

Радиационная химия. Начало ее было положено облучением полиэтилена с целью придания ему большой прочности. Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе композиций на древесной основе, закрепление лаков и других кроющих материалов на поверхности дерева и металла, получение полимербетонов путем пропитки обычного бетона тем или иным мономером с последующим облучением.

Принципиально новой и важной областью химии экстремальных состояний является самораспространяющийся высокотемпературный синтез (СВС) тугоплавких и керамических материалов.

Он основан на реакции горения одного металла в другом или металла в азоте, углероде, кремнии. Метод СВС - это результат развития тепловой теории процессов горения и взрыва в твердых телах. Он предусматривает своего рода горение, например, порошка титана в порошке бора с образованием боридов ТiВ и ТiВ2 или порошка циркония в порошке кремния с образование силицидов циркония ZrSi, ZrSi2. Методом СВС получены сотни тугоплавких соединений превосходного качества.

Характерной особенностью метода СВС является простота технологических установок, исключительно большая выгода в затратах энергии. По оценке американских специалистов, СВС - технология является высочайшим достижением русских ученых из Института химической физики Российской Академии наук.

Смотрите также

Органическая химия
...

Химический элемент калий
Человечество знакомо с калием больше полутора веков. В лекции, прочитанной в Лондоне 20 ноября 1807 г., Хэмфри Дэви сообщил, что при электролизе едкого кали он получил «маленькие шарик ...

Экспериментальная часть
Измерения проводили по трехэлектродной схеме: рабочий электрод – стеклоуглеродный стержень (Æ 0,7 мм), вспомогательный электрод – стеклоуглеродный тигель (V = 25 см3) и электрод сравнения – хл ...