-OOCH2C + + CH2COO-
NH-CH2-CH2-NH + M2+
HOOCH2C CH2COOH
O=C - O O - C=O
I M II + 2H+
H2C - N N - CH2
HOOCH2C III CH2COOH
H2C CH2
или упрощенно (без стадии гидролиза ЭДТА):
NaOOCH2C CH2COONa
N-CH2-CH2-N + M2+
HOOCH2C CH2COOH
NaOOCH2C CH2COONa
N-CH2-CH2-N
- OOCH2C CH2COO
Ион М3+, замещая Н+-ион в третьей карбоксигруппе, а М4+ - в третьей и четвертой, доводят число циклов в комплексонатах с ЭДТА до четырех и пяти соответственно. C увеличением числа циклов в комплексонате растет его прочность (устойчивость), следовательно, чем больше заряд иона металла, тем прочнее его комплекс с ЭДТА. Схематично взаимодействие ЭДТА с катионами различной зарядности можно выразить уравнениями
M2+ + H2Y2 - MY2 - + 2H+
M3+ + H2Y2 - MY - + 2H+
M4+ + H2Y2 - MY + H+
Из приведенных уравнений реакции видно, что:
независимо от заряда катиона всегда одна молекула ЭДТА реагирует с одним ионом металла, т.е. стехиометрия реакции 1: 1;
поскольку ЭДТА взаимодействует как слабая кислота и в каждой реакции выделяется по два Н+-иона, то по определению эквивалента: Э(Мz+) = ½ Mz+ и Э(ЭДТА) = ½ ЭДТА, т.е. можно считать, что Э(Мz+) = Mz+ и Э(ЭДТА) = ЭДТА;
3) реакция образования комплексонатов обратима, поэтому для ее смещения в прямом направлении следует связывать образующиеся Н+-ионы. Для этого комплексонометрические определения чаще всего проводят в присутствии аммиачного (NH4OH + NH4CI) буферного раствора.
На прочность комплексонатов влияет рН среды. Некоторые комплексонаты, например, ионов Са и Mg, устойчивы только в щелочной среде. Ионы, образующие более прочные комплексы (Zn2+, Pb4+), можно титровать ЭДТА в умеренно кислой среде, а 3 - и 4 - зарядные ионы (Fe2+, Zr4+) - даже в сильнокислой. Влияние pH на прочность комплексонатов позволяет посредством регулировки pH производить количественные определения одних ионов в присутствии других.
В зависимости от решаемой задачи комплексонометрическое титрование проводят прямым, обратным или заместительным способом.
Реакцию титрования моделируют ТКТ, построенной в координатах "pM-V(ЭДТА)".
Считая pH >> 10, ТКТ можно рассчитать по следующим упрощенным формулам:
Участок TKT |
Расчётная формула |
До ТЭ |
pM = - lgc(Mz+) |
В ТЭ |
pM = 1/2(lgK(MY) - lgc(Mz+)) |
После ТЭ |
pM = lgc(Mz+) + lgK(MY) + lgc(Y4-) + c(Mz+) |
Примечание: с(Мz+) и c(Y4+) - общие концентрации металла и ЭДТА в титруемом растворе; K(MY) - константа нестойкости комплексоната MY.
Величина скачка титрования растет с увеличением концентраций реагирующих веществ, величины константы устойчивости комплексоната и температуры.
Комплексонаты ЭДТА с ионами металлов - бесцветные cоединения, как и ЭДТА, поэтому ТЭ комплексонометрического титрования фиксируют с помощью индикаторов. Для этих целей можно использовать кислотно-основные индикаторы, оттитровывая в их присутствии щелочью ионы водорода, образовавшиеся при взаимодействии катионов с ЭДТА (косвенное титрование). Однако обычно КТТ в комплексонометрии определяют с помощью металлохромных индикаторов (называемых еще металлоиндикаторами). Они представляют собой соли многопротонных органических кислот, способных образовывать с ионами металлов интенсивно окрашенные соединения.
Одним из наиболее широко применяемых в комплексонометрии индикаторов является эриохром черный Т (ЭЧТ). ЭЧТ относится к азокрасителям и представляет собой натриевую соль трехосновной органической кислоты (условно обозначим NaH2Э) с двумя хелатирующими ОН - группами в молекуле:
OH OH
NaO3S - N=N-
NO2
При растворении ЭЧТ в воде в зависимости от pH раствора могут образовываться три различно окрашенные формы индикатора:
H2Э - НЭ2 - Э2-
красный голубой оранжевый
pH<6,3 pH=6,3…11,5 pH>11,5
При pH = 6,3…11,5, когда сам индикатор имеет синюю окраску, многие ионы металлов образуют с ним растворимые красно-вишневые или фиолетовые комплексы, менее устойчивые, чем с ЭДТА. Например
M2+ + HЭ2 - МЭ - + Н+
Химические элементы в организме человека
Многие учёные считают, что в живом организме не только
присутствуют все химические элементы, но каждый из них выполняет определённую
биологическую функцию. Достоверно установлена роль около ...
Жизнь и деятельность Д.И. Менделеева
...
Химические свойства и область применения полиэтилентерефталата
Полиэтилентерефталат
(ПЭТФ, ПЭТ)- термопластик, наиболее распространённый
представитель класса полиэфиров, известен под разными фирменными названиями:
полиэфир, лавсан или полиэстер.
Пла ...