Физико-химическая характеристика меди
Учим химию / Определение ионов алюминия и меди (II) в сточной воде / Учим химию / Определение ионов алюминия и меди (II) в сточной воде / Физико-химическая характеристика меди Физико-химическая характеристика меди
Страница 1

Медь Cu29 расположена в первой группе системы элементов и имеет электронное строение 1s2 2s2 2p6 3s2 3p6 3d10 4s1 . Для меди наиболее характерны соединения со степенями окисления + 1 () и +2 (, , , , , ), известны также немногочисленные соединения трехвалентной и четырехвалентной меди. Для меди (I) наиболее характерны координационные числа 2 и 4, для Cu(II) максимальное координационное число равно 6, что соответствует октаэдрическим комплексам. Чаще всего встречаются соединения Cu(II), в которых координационное число равно 4 (квадрат) и 6 (искаженный октаэдр)[5].

Чистая медь-тягучий, мягкий, вязкий металл. В отличие от большинства металлов медь обладает ярко выраженной окраской - красного, а в изломе розового цвета, в очень тонких слоях на просвет выглядит зеленовато-голубой. На воздухе медь покрывается рыхлым слоем основных карбонатов[5].

При нагревании медь тускнеет в результате образования поверхностного слоя оксида. При более сильном нагревании она, наконец, полностью переходит в оксид меди (I), а при более высоком давлении кислорода в – в оксид меди(II). Влажный хлор быстро реагирует с медью уже при обычной температуре. С остальными галогенидами медь взаимодействует так же легко. Ярко выраженным сродством медь обладает по отношению к сере и селену. Напротив, газообразный азот, даже при более высокой температуре, заметно не действует на медь. Однако, если над медью, нагретой до красного каления, пропустить газообразный аммиак, то она образует соединение с азотом. В разбавленной азотной кислоте медь растворяется с выделением оксида азота и образованием нитрата меди(II); с горячей концентрированной серной кислотой образуется сульфат меди. В соответствии со своим положением в электронном ряду напряжений медь не может обычным образом заряжаться водородными ионами. Поэтому медь в отсутствие воздуха не подвергается воздействию серной и соляной кислот, уксусной кислоты и т.д. Однако при нагревании газообразный хлористый водород действует на медь с образованием хлорида меди(I)[4]:

Cu+HCl=CuCl+1/2H2. (2)

Растворение меди в разбавленной азотной кислоте сначала идет очень медленно. Однако, после того как в растворе в соответствии с уравнением образуется некоторое количество нитрат – ионов, растворение становится бурным[4].

Cu2O получают прямым взаимодействием меди с кислородом, который плавится без разложения при . В кристалле Cu2O имеет место линейно-тетраэдрическая координация атомов. Гидроксид значительно устойчивее, чем CuОН и по силе приближается к щелочам. Это объясняется уменьшением поляризующего действия катиона Cu+ на ионы за счет экранирования молекулами аммиака. Гидроксиды CuОН – основания не устойчивы. При попытке их получения по обменным реакциям выделяется оксид (красный)[1].

Из оксидов в степени окисления +2 устойчив CuO, его получают непосредственным взаимодействием компонентов. Гидроксиды получают действием щелочи на растворимые соли . Гидроксид является слабо амфотерным[1]:

. (3)

Действием пероксида водорода на сильнощелочной раствор растворимой соли получают гранатово-красный порошок . Он выделяет кислород уже при и является сильнейшим окислителем, например, окисляет соляную кислоту до хлора. Галогениды меди занимают промежуточное положение, монофторид не существует. Из галогенидов меди в степени окисления +2 наиболее устойчив , а иодид не получен. Нерастворимые в воде и кислотах галогениды ЭГ довольно значительно растворяются в растворах галогеноводородных кислот или основных галогенидов[1]:

Страницы: 1 2

Смотрите также

Изучение химического состава снега
В эпоху научно-технической революции антропогенные воздействия на окружающую среду становятся интенсивными и масштабными. Серьезную опасность представляет усиливающиеся загрязнение природны ...

Разновидности и принцип действия экстракторов
В ходе химико-технологического процесса химическому превращению подвергаются разнообразные вещества, обладающие различными физико-химическими свойствами. Разнообразна и сама природа химичес ...

Новейшие достижения современной химии
Химия постоянно развивается как наука. И не только в теоретическом аспекте. На нынешнем уровне развития человечества химические открытия приобрели огромное практическое значение в самых раз ...