Влияние строения полимеров на их горючесть
Учим химию / Огнестойкие композиции на основе полибутилентерефталата / Учим химию / Огнестойкие композиции на основе полибутилентерефталата / Влияние строения полимеров на их горючесть Влияние строения полимеров на их горючесть
Страница 1

Влияние химического строения полимеров на их горючесть. Процессы горения полимерных материалов обусловлены в основном видом материала, его составом, химическим строением, надмолекулярной структурой. Обычно выделяют начальные химические процессы, связанные с разложением слабых связей, окислением углеводородных группировок, образованием углерод-углеродных связей и элемент-кислородных связей с последующим образованием газообразных и конденсированных продуктов. Любой материал можно характеризовать содержанием горючего, понимая под этим содержание способных к распаду и термоокислению связей. Тогда вероятность погасания материала будет возрастать с увеличением возможности образования при тепловых ударах или воздействии пламени связей, более устойчивых к термоокислению, чем исходные. Обычно энергия связей С-О выше энергий углерод-углеродных связей, поэтому представляет интерес выделение процессов окисления на поверхности материалов. Полиолефины, в которых высока доля связей, способных окисляться, имеют наиболее низкий кислородный индекс (17,5 %), поликарбонаты же можно воспламенить только при содержании кислорода выше чем в атмосфере (26,0 %). Предполагается, что действие регуляторов рения в основном проявляется на начальных стадиях горения [3-5].

Такое деление не всегда оправдывается. Например, некоторые полимеры с разветвленными цепями или содержащие циклические группировки, относят к сгораемым, также к сгораемым относят некоторые сетчатые и трехмерные полимеры. Правда, среди этих полимеров есть такие, которые коксуются на воздухе. Рассмотрим влияние на скорость горения химической природы полимерных материалов. В ряде работ [6-10] указывается па возможность корреляции между химическим строением полимера и способностью его к воспламенению. Отмечено, что уменьшение числа углеводородных группировок приводит к существенному снижению его горючести. Отсюда сделаны выводы о целесообразности снижения воспламеняемости введением в полимеры фрагментов, содержащих конденсированные ароматические кольца.

В работе Ван Кревелена [11, 12] установлена эмпирическая зависимость между кислородными индексами, характеризующими содержание кислорода в азотно-кислородной смеси, достаточное для воспламенения и устойчивого горения полимеров, и содержанием различных инкрементов, составляющих макромолекул полимеров. Аналогичная зависимость найдена для коксовых остатков соответствующих полимеров. Увеличение содержания углеводородных групп соответствует росту количества горючего вещества в полимере, однако при недостаточном потоке окислителя у поверхности, когда скорость термического разложения больше скорости термоокислительного разложения, возможно образование предвестников кокса или сажи [13]. Тогда большое значение начинает приобретать химическое строение углеводородных фрагментов. Например, образование ненасыщенных связей этиленового, ацетиленового или аллильного типа, как известно [14], приводит к появлению ароматических колец или конденсированных ароматических колец. Наличие в полимере ароматических колец способствует в дальнейшем образованию графитоподобных веществ на поверхности. В полимерах одного класса, отличающихся одним или несколькими химическими фрагментами, можно определить влияние строения на горючесть полимеров.

Энергия связи и горючесть полимеров. Между теплотами сгорания, теплотами образования и энергиями связей существует функциональная зависимость [6]. Теплоты сгорания, кислородные индексы и показатели возгораемости взаимосвязаны. Для трудносгораемых полимеров удельные теплоты сгорания составляют менее 21,0 МДж/кг. Для остальных полимеров удельные теплоты сгорания выше указанного, причем отличить по их значениям сгораемые полимеры от трудносгораемых практически невозможно. Например, самозатухающие, судя по кислородным индексам, полигексаметиленадипамид и полихлоропрен выделяют при сгорании столько же или даже больше тепла, чем сгораемые полиметилметакрилат и полиэтилентерефталат. Правда, если сравнить теплоты сгорания, приходящие на связь, то для первых двух полимеров они больше, чем для полиметилметакрилата и полиэтилентерефталата.

Для приближенной оценки затрат на разрушение связи в полимерах в сочетании с удельной теплотой сгорания можно использовать энергоемкость (q) средней связи:

Страницы: 1 2 3

Смотрите также

Предисловие
Справочник включает весь теоретический материал школьного курса химии, необходимый для сдачи ЕГЭ, – итоговой аттестации учащихся. Этот материал распределен по 14 разделам, содержание которых с ...

Водородные связи
Интерес к олигомерам фторида водорода (димеру, тримеру) в последние десятилетия поистине велик. Объясняется это прежде всего той ролью, которую играет водородная связь при интерпретации, мод ...

Физико-химические свойства йода и его соединений
Йод открыт французским химиком Куртуа в 1811 году, он относится к VII группе периодической системы Д.И. Менделеева. Порядковый номер элемента - 53. В природе он находится в виде стабильного ...