1. Основные положения теории газовой хроматографии как метода физико-химических измерений.
В основе физико-химических измерений с помощью газовой хроматографии лежит связь между значениями определяемых величин с параметрами хроматографических зон. Так, время удерживания максимума зоны компонента является функцией его коэффициента активности или адсорбции, что позволяет определить коэффициенты активности и другие термодинамические характеристики жидких и твердых тел, используемых в качестве неподвижных фаз. Исходя из температурной зависимости удерживаемых объемов, можно найти важнейшие характеристики смешения — энтальпию и энтропию.
Основным параметром, определяемым в газовой хроматографии, является время удерживания (или удерживаемый объем) сорбата неподвижной фазой.
Время удерживания сорбата в хроматографической колонке есть функция коэффициента распределения вещества между жидкой и газовой фазами, функция коэффициентов адсорбции на поверхности газ — жидкость, газ — твердое тело и жидкость — твердое тело, величины объема колонки, занятой газом и неподвижной фазой, скорости газа-носителя, среднего давления в колонке и величиной перепада давления на входе и выходе из колонки. Под действием потока газа-носителя молекулы сорбата перемещаются вдоль колонки. Скорость этого перемещения обратно пропорциональна константе распределения их между газовой и неподвижной фазами. Количественно процесс элюирования из колонки может быть описан при кинетическом рассмотрении элементарных процессов движения молекул в колонке. Линейная скорость максимума зоны компонента в данной точке колонки. В последние годы в физической химии полимеров широкое распространение получил метод обращенной газовой хроматографии, основанный на неаналитическом применении газоадсорбционной и газожидкостной хроматографии. Термин «обращенная газовая хроматография» был предложен в 1966 г. одновременно Дэвисом с сотрудниками и В. Г. Березкиным. Название этого метода обусловлено тем, что с его помощью в отличие от классической газовой хроматографии решается «обратная» задача, т. е. исследуются свойства неподвижной фазы. Для исследования свойств неподвижных фаз полимеров этот метод начал широко применяться после выхода в свет в 1969 г', работы Смидсрода и Гиллета [9], которые показали, что, используя его, можно непосредственно оценивать параметры термодинамического взаимодействия полимер — растворитель, такие, как коэффициенты активности, парциальные избыточные свободные энергии, энтальпии и энтропии смешения. В дальнейшем благодаря работам Гиллета с сотрудниками, показавшими, что этим методом можно вычислять температуры стеклования и плакления, степень кристалличности полимеров, исследовать кинетику кристаллизации и главным образом определять параметры термодинамического взаимодействия полимер — растворитель, методом обращенной газовой хроматографии было исследовано большое число полимеров и их растворов в низкомолекулярных растворителях. Особенно интенсивно этот метод стали использовать в последние годы для изучения термодинамических свойств смесей полимеров. Установлено, что он может успешно применяться для оценки поверхностных свойств полимеров, определения параметров растворимости, степени кристалличности смесей полимеров и сополимеров, влияния наполнителей на термодинамические свойства бинарных полимерных систем
Определение термодинамических параметров реакции полимеризации тетрафторэтилена
Реакция
полимеризации имеет вид:
В качестве
инициатора процесса применяется персульфат аммония . Примесь в исходном мономере – триэтиламин.
Рассчитаем
теплоемкость и некот ...
Биокерамика на основе фосфатов кальция
В последние годы значительное
внимание уделяется созданию керамических материалов медицинского назначения, предназначенных
для использования при реконструкции дефектов костных тканей, образу ...
Моделирование парожидкостного равновесия
Выбор модели, адекватно описывающей
фазовое равновесие системы, является важным и необходимым шагом при решении
массообменного процесса. На сегодняшний день разработано достаточно большое
число мет ...