Биоцидный композит на основе окисленной целлюлозы и метакрилата аминогуанидина получали следующим путем. К суспензии окисленной целлюлозы (ОЦХ) в воде при перемешивании добавляли метакрилатаминогуа- нидин и персульфат аммония, нагревали смесь до 60°С и проводили полимеризацию в течение 4-20 часов. Соотношение ОЦХ : Н20 = 1:6 масс., концентрация АГМ в воде - варьировалась от 10 до 50% (масс), соотношение АГМ : ПСА = 1:0,001 мае. Полученный композит отделяли от маточного раствора, выдерживали 1 час в дистиллированной воде при 60°С, промывали в воде для отделения метакрилатаминогуанидина, не иммобилизованного в ОЦХ, и сушили.
Проведенные исследования показали, что количество аминогуани- динметакриалата, вошедшего в состав композита, зависит от концентрации мономера.
Структуры, образующиеся при взаимодействии окисленной целлюлозы (ОЦХ) с цвиттер-ионными делокализованными парами метакрилат- и поли- метакрилатаминогуанидина представлены в общем виде на схемах а,б,в.
Для мономер/полимерных катионотропных четвертичных иминопроизвод- ных солей метакрилатаминогуанидина можно ожидать первый тип связывания (а) основного биоцидного компонента - катиона аминогуанидиния (C(NH))® (прото- нированная форма исходного гуанидина, который имеет симметрию третьего порядка) с карбоксилат-анионом метакриловой кислоты (исходный носи-тель основного биоцидного компонента, имеющий симметрию второго порядка). Надо отметить, что длина связи C-N в катионе равна 0,132 нм, и он является прекрасным центром связывания с различными структурными фрагментами нук- леофильной природы, т.к. остается протонированным в очень широком диапазоне рН, например,4% водные растворы гуанидингидрохлорида (H2N)2C=NH-HC1 и гуанидингидрокарбоната (H2N)2C=NH-0,5H2CО3 имеют значения рН = 6,4 и 11,2 [4]. Данный тип наиболее вероятен для истинных четвертичных иминопро- изводных солей слабых кислот [5]. Второй тип связыва-ния (б) скорее следует ожидать при наличии нуклеофилов, конкурирующих с карбоксилат-анионами (исходными носителями основного биоцидного компо-нента) при стабилизации четвертичных аммониевых катионов гуанидиния, но не образующих истинные цвитгер-ионные резонансные структуры. В нашем случае нуклеофильной составляющей -X в таких мономер/полимерных цвиттер- ион-ных делокализо- ванных резонансных структурах может выступить атом кислорода карбоксиль- ной(-СООН) или гидроксильной (-ОН) групп активированной целлюлозы химической. При этом указанные связи относительно легко могут разрушаться и восстанавливаться (иногда образуя другие структуры) как под действием различных природных факторов, так и в результате направленного целевого воздействия (изменение рН среды, температуры, природы растворителя, а также за счет взаимодействия с конкурирующими обменными катионами или мембранной поверхностью бактериальной клетки) [6]. Третий тип связывания (в) возможен за счет образования альдиминовых связей C=N (азот- углеродных ковалентных связей) при реакции конденсации метакрилатгуа- нидина с активированной целлюлозой. Не исключается также возможность образования углерод - углеродных связей за счет радикальной привитой сопо- лимеризации активированной целлюлозы с виниловой составляющей метак- рилатаминогуанидина. [7]. В этих случаях получаются достаточно устойчивые модифицированные продукты.
Возможность образования лабильных связей в ходе иммобилизации за счет взаимодействия альдегидных или гидроксильных групп активированной целлюлозы с мономер/полимерными цвиттер-ионными парами метак- рилатгуанидина была доказана ИК-спектроскопией, элементным и рентгено- дифракционным анализами опытных образцов целлюлозы хлопковой в виде волокнистого материала и бинта (ЦХ), окисленной целлюлозы (ОЦХ), композитов целлюлоза хлопковая + метакрилатаминогуанидин (ЦХ+АГМ), окисленная целлюлоза + метакрилатаминогуанидин (ОЦХ+АГМ), целлюлоза хлопковая + по- лиметакрилатаминогуанидин (ЦХ+ПАГМ), окисленная целлюлоза + полиме- такрилатаминогуанидин (ОЦХ+ ПАГМ). Косвенным подтверждением иммобилизации явилось наличие биоцидных свойств у исследованных образцов.
Обработка ОЦХ водным раствором АГМ (механическая смесь) приводит к увеличению степени кристалличности образцов, что связано, видимо, с рекристаллизацией ОЦХ.
Синтез 4-бром-4’-гидроксибифенила
Настоящая работа посвящена синтезу 4-бром-4’-гидроксибифенила. Это
соединение является важным реагентом для синтеза ферроценсодержащих жидких
кристаллов. Введение в молекулу ферроцена бифени ...
Экспериментальная часть
Измерения
проводили по трехэлектродной схеме: рабочий электрод – стеклоуглеродный
стержень (Æ 0,7 мм), вспомогательный электрод – стеклоуглеродный тигель (V = 25 см3) и электрод сравнения – хл ...
Расчет и проектирование выпарной установки непрерывного действия для выпаривания водного раствора CuSO4
Выпаривание –
процесс концентрирования растворов нелетучих веществ путем удаления жидкого
летучего растворителя в виде паров. Сущность выпаривания заключается в переводе
растворителя в паро ...