То, что Беккерель увидел на проявленных пластинках, буквально поразило его: черные силуэты образцов резко и четко обозначились на светочувствительном слое. Значит, фосфоресценция здесь ни при чем. Но тогда, что же это за лучи испускает соль урана? Ученый снова и снова проделывает аналогичные опыты с другими соединениями урана, в том числе и с теми, которые не обладали способностью фосфоресцировать или годами лежали в темном месте, и каждый раз на пластинках появлялось изображение.
У Беккереля возникает пока еще не вполне ясная мысль, что уран представляет собой “первый пример металла, обнаруживающего свойство, подобное невидимой фосфоресценции”.
В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. Беккерель попросил у Муассана немного уранового порошка и установил, что излучение чистого урана значительно интенсивнее, чем его соединений, причем это свойство урана оставалось неизменным при самых различных условиях опытов, в частности при сильном нагревании и при охлаждении до низких температур.
С публикацией новых данных Беккерель не спешил: он ждал, когда Муассан сообщит о своих весьма интересных исследованиях. К этому обязывала научная этика. И вот 23 ноября 1896 года на заседании Академии наук Муассан сделал доклад о работах по получению чистого урана, а Беккерель рассказал о новом свойстве, присущем этому элементу, которое заключалось в самопроизвольном делении ядер его атомов. Это свойство было названо радиоактивностью.
Открытие Беккереля ознаменовало собой начало новой эры в физике — эры превращения элементов. Отныне атом уже не мог считаться единым и неделимым—перед наукой открывался путь в глубины этого “кирпичика” материального мира.
Естественно, что теперь уран приковал к себе внимание ученых. Вместе с тем их интересовал и такой вопрос: только ли урану присуща радиоактивность? Быть может, в природе существуют и другие элементы, обладающие этим свойством?
Ответ на этот вопрос смогли дать выдающиеся физики супруги Пьер Кюри и Мария Складовская-Кюри. С помощью прибора, сконструированного мужем, Мария Кюри исследовала огромное количество металлов, минералов, солей. Работа велась в неимоверно тяжелых условиях. Лабораторией служил заброшенный деревянный сарай, который супруги подыскали в одном из парижских дворов. “Это был барак из досок, с асфальтовым полом и стеклянной крышей, плохо защищавшей от дождя, без всяких приспособлений, — вспоминала впоследствии М. Кюри. — В нем были только старые деревянные столы, чугунная печь, не дававшая достаточно тепла, и классная доска, которой так любил пользоваться Пьер. Там не было вытяжных шкафов для опытов с вредными газами, поэтому приходилось делать эти операции на дворе, когда позволяла погода, или же в помещении при открытых окнах”. В дневнике П. Кюри есть запись о том, что порой работы проводились при температуре всего шесть градусов выше нуля.
Много проблем возникало и с получением нужных материалов. Урановая руда, например, была очень дорогой, и купить на свои скромные средства достаточное количество ее супруги Кюри не могли. Они решили обратиться к австрийскому правительству с просьбой продать им по невысокой цене отходы этой руды, из которой в Австрии извлекали уран, используемый в виде солей для окрашивания стекла и фарфора. Ученых поддержала венская Академия наук, и несколько тонн отходов было доставлено в их парижскую лабораторию.
Мария Кюри работала с необыкновенным упорством. Изучение разнообразных материалов подтверждало правоту Беккереля, считавшего, что радиоактивность чистого урана больше любых его соединений. Об этом говорили результаты сотен опытов. Но Мария Кюри подвергала исследованиям все новые и новые вещества. И вдруг . Неожиданность! Два урановых минерала — хальколит и смоляная руда Богемии — гораздо активнее действовали на прибор, чем уран. Вывод напрашивался сам собой: в них содержится какой-то неизвестный элемент, характеризующийся еще более высокой способностью к радиоактивному распаду. В честь Польши— родины М. Кюри—супруги назвали его полонием.
Снова за работу, снова титанический труд — и еще победа: открыт элемент, в сотни раз превосходящий по радиоактивности уран. Этот элемент ученые назвали радием, что по-латыни означает “луч”.
Открытие радия в какой-то мере отвлекло научную общественность от урана. В течение примерно сорока лет он не очень волновал умы ученых, да и инженерная мысль редко баловала его своим вниманием. В одном из томов технической энциклопедии, изданном в 1934 году, утверждалось: “Элементарный уран практического применения не имеет”. Солидное издание не грешило против истины, но спустя всего несколько лет жизнь внесла существенные коррективы в представления о возможностях урана.
Прикладная фотохимия
Фотохимия - наука о химических превращениях
веществ под действием электромагнитного излучения: ближнего ультрафиолетового
(~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 ...
Количественный анализ силибина в экстрактах, полученных с использованием субкритической воды
Хорошее здоровье
– основа долгой, счастливой и полноценной жизни. Чтобы поддерживать здоровье,
необходимы знания о свойствах применяемых лекарств, лекарственных растений, а
также биологичес ...
Аминокислоты
Любое
соединение, которое содержит одновременно карбоксильную и аминогруппу, является
аминокислотой. Однако, чаще этот термин применяется для
обозначения карбоновых кислот, аминогруппа кото ...