Системы, аккумулирующие солнечную энергию, и требования к ним.
Учим химию / Химические преобразователи солнечной энергии / Учим химию / Химические преобразователи солнечной энергии / Системы, аккумулирующие солнечную энергию, и требования к ним. Системы, аккумулирующие солнечную энергию, и требования к ним.

Диапазон использования солнечного излучения чрезвычайно широк. Энергией Солнца питаются высоко температурные установки, концентрирующие поток лучей с помощью зеркал. В качестве аккумуляторов энергии в них используются как физические теплоносители, так и некоторые неорганические вещества, способные к циклическим реакциям термического разложения- синтеза (оксиды, гидраты, сульфаты, карбонаты). Устройства другого типа преобразуют энергию излучения в электрическую, тепловую или энергию химических реакций посредством фотофизических или фотохимических процессов. Среди фотохимических путей преобразования СЭ наиболее значимыми являются следующие:

· Фотокаталитическое разложение воды под действием металлокомплексных соединений;

· Создание «солнечных фотоэлектролизёров», основанных на фотоэлектронных переносах или фотогальваническом эффекте;

· Фотосинтез - наиболее эффективный биохимический способ преобразования энергии Солнца.

Наряду с ними значительный интерес представляют химические системы, способные аккумулировать СЭ в виде энергии напряжения химических связей. Такие системы удовлетворять требованиям , которые относятся как к фотохромному реагенту А и продукту В, так и к параметрам процесса.

А↔В+ΔН.

Основные требования сводятся следующему:

· Реагент А должен поглощать свет в УФ и видимых частях спектра (400-650 нм), так как более 50% СЕ, достигающей Земли, распределено в области 300-700 нм. Фотоизомер В, наоборот, не должен поглощать в этой области, чтобы избежать фотоинициирования обратной реакции. Во избежание потерь энергии оба компонента должны быть нелюминесцирующими;

· Обратная реакция должна иметь значительный тепловой эффект (>300 Дж/г);

· Для длительного сохранения запасённой фотопродуктом В энергии активационный барьер термического перехода В→А должен быть достаточно большим – порядка 100 кДж/моль;

· Прямая фотохимическая реакция должна характеризоваться высоким квантовым выходом, обратная подвержена каталитическому ускорению или тепловому инициированию;

· Прямой и обратный процессы должны характеризоваться высокими степенями превращения и отсутствием побочных продуктов;

· Вещества А и В должны достаточно дешёвыми, доступными, нетоксичными, взрывобезопасными и химически устойчивыми по отношению к атмосферной влаге и воздуху.

Среди органических систем, удовлетворяющих указанным выше условиям, наиболее важными являются следующие:

· Валентная изомеризация нитрон – оксазиридин;

· Геометрическая (Е)↔(Z) изомеризация производных индиго;

· Геометрическая изомеризация N – ацилированных аминов и нитрилов с последующей внутримолекулярной перегруппировкой;

· Термически обратимая реакция фотодимеризации производных антрацена.

Циклические реакции фотораспада – термической рекомбинации свойственны и некоторым неорганическим системам, например фоторазложению нитрозилхлорида:

NOCl ↔NO + 1/2Cl²

Основное преимущество органических систем перед неорганическими связано с возможностью широкого варьирования строения молекул с целью улучшения их спектральных характеристик как аккумуляторов и преобразователей СЭ.

Смотрите также

Физико-химические основы адсорбционной очистки воды от органических веществ
Объем потребляемой в мире воды достигает 4 трлн. м3 в год, а преобразованию со стороны человека подвергается практически вся гидросфера. Химическая и нефтехимическая отрасли промышленности с ...

Анализ индивидуального риска событий узла пиролиза этановой фракции
...

Расчет насадочной ректификационной колонны непрерывного действия по разделению смеси хлороформ-бензол
Задание на проектирование по теме «ректификация» Разделяемая смесь ...