Как известно, в зависимости от ориентации кремнекислородных тетраэдров и вследствие их подвижности угол Si-O-Si в силикагеле может изменяться от 180? (тридимит) до 150? (кварц) и даже 130? (в природных силикатах), а расстояние между ОНгруппами на полностью гидроксилированной поверхности составляет 0,3-0,45 нм. При этом гидроксилы могут принадлежать двум тетраэдрам, либо имеющим общую вершину (рис. 4, а), либо не имеющим ее (рис. 4, б ). Однако такое различие не имеет существенного значения для величины угла Si-O-Si, который близок к 150? (кварц), если принять расстояние между гидроксилами dOH-OH = = 0,3 нм, а dO-O = 0,162 нм (кварц). Тетраэдрическая молекула CrO2Cl2 , в которой расстояние dCl-Cl = = 0,354 нм, взаимодействует с двумя гидроксилами силикагеля, среднее расстояние между которыми в исходной матрице составляет 0,30-0,36 нм. Примем расстояние между атомом хрома и кислорода при образовании Si-O-Cr-связи dCr-O = 0,175 нм (расстояние между атомом хрома и мостиковым кислородом Ом в CrO3). При значении угла Ом-Сr-Ом в группах (ЇSi-O-)2CrO2 (рис. 4, в) 113? (равен углу Cl-Cr-Cl в тетраэдре СrO2Cl2) dOH-OH = 0,175 i 2 i i sin 56,5? = 0,293 нм, что близко к величине расстояния на поверхности силикагеля между ОНгруппами, связанными водородными связями (рис. 4, а, б ), то есть происходит незначительное смещение тетраэдров [SiO4].
Как известно, среднее расстояние dCr-O в соединениях трехвалентного хрома возрастает по сравнению с соединениями шестивалентного хрома на 0,03-0,04 нм. Поэтому можно считать, что при восстановлении шестивалентного хрома в группах (ЇSi-O-)2CrO2 до трехвалентного с образованием группировок (ЇSi-O-)2CrOН расстояние между атомами хрома и кислорода должно увеличиваться до dCr-O = 0,175 + 0,035 = 0,210 нм (как в Cr2O3). Если предположить, что атом хрома в группе (ЇSi-O-)2CrOН (рис. 4, г) находится в центре равностороннего треугольника с вершинами [ОН, Ом , Ом], то расстояние между вершинами кремнекислородных тетраэдров, связанных с хромом, будет равно dOH-OH = 0,21 i 2 i sin 60? = 0,364 нм. Таким образом, в процессе восстановления групп (ЇSi-O-)2CrO2 тетраэдры [SiO4] вновь незначительно смещаются.
При дальнейшем расчете геометрических соотношений в процессе наращивания оксидного слоя трехвалентного хрома исходили из предположения, подтвержденного экспериментальными данными, что приращение хрома после второго и последующих циклов МН осуществляется за счет взаимодействия оксохлорида хрома с ОН-группами, связанными с атомами хрома предыдущего слоя. Исходя из предложенных допущений и учитывая прямолинейную зависимость между величиной удельной поверхности (Sуд) и содержанием хрома (СЭ) (числом циклов МН) в продуктах (I-VI)б можно рассчитать средние расстояния dCr-Cr , а также dOH-OH в этих образцах до и после конденсации ОН-групп у соседних атомов хрома (табл. 1) по формуле
где NA - число Авогадро, а DСЭ - приращение концентрации хрома или содержание OHгрупп в образце.
Как следует из данных табл. 1, в продукте Iб резко возрастают расстояния между соседними ОН-группами (0,633 нм) по сравнению с исходным силикагелем. Конфигурация образующейся после восстановления (ЇSi-O-)2CrO2 группировки (рис. 4, г) не допускает возможности конденсации гидроксилов у соседних атомов хрома. А расстояние dOH-OH = = 0,633 нм значительно больше, чем dCl-Cl = 0,354 нм в молекуле оксохлорида хрома. Иначе говоря, присоединение CrO2Cl2 к группам =Cr-ОН на поверхности образца Iб возможно лишь за счет одного атома хлора в молекуле оксохлорида.
Радиоактивный анализ
Радиоактивный
анализ открыл в конце XIX столетия (в 1895 г.) немецкий физик Вильгельм Конрад Рентген невидимые
лучи способные беспрепятственно проходить через твёрдые тела и вызывать
почерн ...