Экстракционно-фотометрический метод

В последнее время, несмотря на большое развитие целого ряда физико-химических методов, отличающихся большой избирательностью по сравнению с химическими методами, не всегда удается непосредственно определять многие элементы в сложных смесях. Решение этой задачи во многом зависит от предварительного разделения, которое с успехом может быть проведено методом экстракции, основанном на различном распределении компонентов в системе неводный растворитель – вода. Распространению метода экстракции способствовало появление ряда теоретических работ, посвященных физико-химическому исследованию этого процесса. Метод позволяет разделять вещества, сильно отличающиеся по концентрации, поэтому в настоящее время экстракционные методы нашли широкое применение в практике аналитических лабораторий.

Особое значение приобретает метод экстракции ввиду необходимости определения примесей в особо чистых веществах, широко применяемых в атомной и полупроводниковой технике. Для определения малых и ультрамалых количеств элементов, являющихся примесями, метод экстракции применяется не только для выделения определяемого элемента, но и для целей его концентрирования.

Очень удачным является сочетание метода экстракции с последующим спектрофотометрическим определением элементов (экстракционно-фотометрический метод).

В большинстве случаев для определения искомых элементов используют комплексные соединения этих элементов с органическими реагентами. В спектрах поглощения растворов комплексного соединения и реагента наблюдается наложение максимумов, что осложняет спектрофотометрическое определение. Для того чтобы исключить поглощение реагента, в отдельных случаях используется дифференциальный метод. Например, при определении цинка дитизоном измеряют поглощение испытуемого раствора по смешанной окраске, используя в качестве «нулевого» раствор дитизона.

Перспективным является прием, позволяющий путем реэкстракции перевести реагент из слоя органического растворителя в водный слой. Этот прием основан на различной зависимости коэффициента распределения комплексного соединения и реагента от величины рН раствора (рис.1). Таким образом, можно сравнительно простым приемом получить определяемое соединение в чистом виде и освободиться от необходимости применять приемы работы и расчеты, используемые при работе с многокомпонентными системами.

Рис.1. Зависимость процента экстракции хлороформом от значения рН водной фазы: 1 – гептоксимата никеля; 2 – гепоксимата.

Однако следует учитывать, что для экстракции ультрамалых количеств элементов характерно смещение интервала значений полной экстракции в более щелочную область. Например, соединение никеля с диоксимом 1,2-циклогександиона количественно экстрагируется хлороформом при содержании никеля ~ 10 мкг в интервале значений рН 4,2–11; при содержании никеля 5 мкг и меньше – при рН 5,4–12,75.

Помимо этого метод экстрагирования дает возможность исследовать новые комплексные соединения с целью получения их количественных характеристик (констант устойчивости, истинных значений ε).

Смотрите также

Ответы к задачам
Тема 1 1. 0,055. 2. 6.10-3 моль/л. 3. I = 0,006; aCa2+ = 6,4.10-3 моль/л; aCl- = а = 1,5.10-2 моль/л. 4. а± = 8,223.10-2; а = 5,56.10-4. 5.-133,15 кДж/моль. 6. 297 К. 7. 5,5.10-6 Ом-1.м-1. 8. ...

Прикладная фотохимия
Фотохимия - наука о химических превращениях веществ под действием электромагнитного излучения: ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 ...

Исследование распределения и накопления трихлоруксусной кислоты в модельных системах и природных водах
Экология, загрязнение окружающей среды, экологический мониторинг, экологическая химия — часто встречающиеся в наше время слова и сочетания, выражающие всеобщую озабоченность состоянием прир ...