Ориентационные взаимодействия Ван-дер-Ваальса (эффект Кезома)
Учим химию / Физическая связь / Учим химию / Физическая связь / Ориентационные взаимодействия Ван-дер-Ваальса (эффект Кезома) Ориентационные взаимодействия Ван-дер-Ваальса (эффект Кезома)
Страница 1

Рассмотрим возможные силы взаимодействия между двумя диполями…

Если два диполя расположены на одной прямой и одинаково ориентированы (см. рис. 2а), то они притягиваются с силой обратно пропорциональной третьей степени расстояния между ними, установка диполей в "хвост". Аналогичная сила действует между двумя противоположно направленными диполями, расположенными на параллельных прямых, на кратчайшем расстоянии друг от друга (см. рис. 2б), установка диполей "один под другим" (антипараллельная установка диполей). В обоих случаях они ориентируются так, чтобы энергия системы стала минимальной (см. рис. 2). Если диполи ориентированы не так, как показано на рис. 2 то между диполями кроме силы радиального взаимодействия (притяжение либо отталкивание) возникает крутящий момент.

Пусть расстояние между центрами диполей (s) намного больше длинны диполя (l). Заряд разнесенный в диполе на расстояние l обозначим через e. Тогда энергию ориентационного взаимодействия можно представить как алгебраическую сумму кулоновского притяжения и отталкивания зарядов полюсов диполей:

U

ор

=

¾

e2

¾

e2

+

2e2

=

¾

2e2l2

.

s-l

s+l

s

(s2-l2)s

Пренебрегая величиной l2 по сравнению с s2 в знаменателе и обозначая через m дипольный момент (m=el), получаем:

Uop--= - 2

m2/

s3

. Для двух разных полярных молекул с моментами m1 и m2 такой же расчет дает Uop= ‑2

m1

m2/

s3

. При установке диполей один под другим (см. рис.2)

U

ор

=

¾

2

e2

+

2

e2

=

-2e2(s2+l2)+ 2e2s(s2+l2)1/2

.

s

(s2+l2)1/2

(s2+l2)s

Учитывая, что l2<<s2 , воспользуемся приближенным равенством (s2+l2)1/2 @ s+l2/2s . Тогда

Uop

= –

e2l2

, откуда следует: Uop

çç

=-

m

2

/

s

3

. Выше упомянутые формулы справедливы для расчета

(s2+l2)s

Энергии ориентационного взаимодействия тогда, когда тепловое движение не расстраивает ориентацию молекул, т.е. когда Uop>>kT. Поэтому они пригодны для расчета энергии лишь в молекулярных кристаллах, где положение молекул фиксировано. В жидкостях и газах тепловое движение приводит ко всевозможным ориентациям молекул. При усреднении энергии взаимодействия по всем возможным ориентациям с учетом теплового движения, для жидкостей и газов получаем следующую формулу:

Для полярных молекул вклад ориентационного взаимодействия в энергию межмолекулярного взаимодействия жидкостей можно оценить, не зная конкретных расстояний между молекулами. В полярном диэлектрике на молекулу действует эффективное поле, создаваемое всеми остальными молекулами Eэфф. Понижение энергии одного моля частиц при этом W=-

Страницы: 1 2

Смотрите также

Итоговый вид кинетического уравнения
В итоге получили кинетическое уравнение, адекватно описывающее эксперимент: Механизм реакции ...

Методы анализа питьевой воды
...

Основные принципы подбора условий разделения
Перед начинающим хроматографистом проблема выбора типа разделительной системы (эксклюзионной, ион-парной, адсорбционной или другой) и подбора условий, с которыми лучше эту систему использов ...