"Залечивание" поры - дальнейшее расширение плазменного образования достаточно быстро приводит к значительному снижению температуры последнего и, как следствие, к уменьшению концентрации носителей разряда, обрыву тока и стремительному охлаждению канала. Исчезновение газо-плазменного пузырька будет происходить после погашения газового разряда в нем. Погашение газового разряда, как известно, произойдет при снижении плотности тока в нем ниже минимально допустимой для самоподдержания разряда. В случае микроразрядов причинами уменьшения плотности тока газового разряда могут являться: 1) обеднение со временем припузырькового слоя электролита переносчиками тока, из-за чего электролит становится неспособным обеспечивать минимально допустимую для самоподдержания разряда плотность тока, и газовый разряд гаснет; 2) увеличение размеров пузырька микроразряда из-за испарения в него окружающей его жидкости; 3) заплавление или "залечивание" (путем анодирования в газовой плазме) канала пробоя в барьерной части оксидной пленки. Образовавшийся при первом пробое кратер обычно достигает поверхности металла. В этом месте плотность тока становится максимальной благодаря относительно малому сопротивлению электролита в кратере, что обеспечивает быстрое появление оксидной пленки (продукта плазмо-химической реакции МеxОy). Происходит "залечивание" места пробоя, нарастает толщина оксидной пленки, причем преимущественно в глубь материала подложки.
Таким образом, в работе на основании результатов эксперимента и литературных данных предложен механизм воздействия анодного микроразряда на растворы серной кислоты, включающий следующие стадии:
-образование возбужденных и ионизированных молекул в пузырьке микроразряда из-за протекания в нем газового разряда;
-протекание реакций с образованием радикалов и молекулярных продуктов, реакции которых друг с другом и исходными веществами дают основную массу конечных продуктов;
-диффузионный вынос образующихся радикалов и других частиц за пределы газового пузырька, реакции которых приводят к конечным молекулярным продуктам в припузырьковом слое электролита.
Получение серной кислоты путем переработки отходов производства диоксида титана
Сернокислотный
метод производства диоксида титана из ильменита и титановых шлаков имеет ряд
существенных недостатков — сложная многостадийная схема, высокий расход серной
кислоты, значитель ...
Выводы
В
результате проведенных исследований можно сделать следующие выводы:
1.
Проведен анализ различных литературных данных по проблеме анализа
микрограммовых количеств тяжелых металлов методом инвер ...
Получение н-бутиленов дегидрированием н-бутана
н-бутилен, н—С4Н8,
находит применение, как сырье для получения метилэтилкстона, являющегося ценным
растворителем; служит исходным веществом в производстве СК через
дивинил, используется для ...