Не будет преувеличением утверждение, что уравнение Ван-дер-Ваальса является наиболее известным из всех существующих на данный момент. Оно впервые сформулировано автором в 1873 г. в диссертации “О непрерывности газообразных и жидких состояний” [4].
Математические выражения, относящиеся к уравнению Ван-дер-Ваальса и широко встречающиеся в литературе, приведены ниже.
Стандартный вид уравнения:
; (4.4)
. (4.5)
Уравнение в виде полинома:
; (4.6)
. (4.7)
Вириальный вид уравнения:
(4.8)
Приведенный вид уравнения:
, (4.9)
где ; ; .
Параметры, выраженные через критические свойства и полученные из условий (4.2) и (4.3), равны:
; (4.10)
, (4.11)
a - параметр, учитывающий действие сил притяжения, b - отталкивания. Последний параметр, называемый эффективным молекулярным объемом, согласно теоретическим расчетам Ван-дер-Ваальса должен в четыре раза превышать действительный объем молекул.
Результаты расчетов, выполненных с использованием уравнения Ван-дер-Ваальса, отличаются невысокой степенью точности и лишь в редких случаях превосходят средний уровень. В этой связи была проделана большая работа в целях усовершенствования данного уравнения путем установления соотношения его параметров с некоторыми другими свойствами помимо параметров критического состояния, а именно с точкой кипения, плотностью, коэффициентом термического расширения и пр. Тем не менее, до настоящего времени из всех известных модификаций уравнения предпочтение отдается его оригинальной редакции. Несмотря на относительную простоту, уравнение Ван-дер-Ваальса позволяет передать сложность взаимоотношений рассматриваемых параметров - давления, температуры, объема. Для иллюстрации сказанного в примере 4.2 избраны три изотермы: одна из них существенно выше критической температуры, вторая близка к ней, а третья проходит через различные области P-V-T пространства - ненасыщенной жидкости, смеси жидкости и пара, область газообразного состояния вещества.
Пример 4.2
Для изобутилбензола с использованием уравнения состояния Ван-дер-Ваальса показать зависимость P от V при 500, 657, 1170 К и объеме 100-3000 см3/ моль. Критические температура и давление равны 650 К и 31 атм соответственно.
Решение
1. Вычислим характеристические константы уравнения:
a = 27·82,062·6502/(64·31) = 3,87·107 (см6·атм)/моль2;
b = 82,06·650/(8·31) = 215 см3/моль.
2. Для заданных температур и дискретных значений молярных объемов вычислим значения давлений. Для 500 К и 1000 см3/моль имеем:
Р = 82,06·500/(1000–215)–3,87·107/10002 = 14 атм.
Фосфор и его соединения
Фосфор (лат. Phosphorus)
P – химический элемент V группы периодической системы
Менделеева атомный номер 15, атомная масса 30,973762(4). Рассмотрим строение
атома фосфора. На наружном энерге ...
P-V-T соотношения: реальный газ и идеальный газ
Механическое
состояние вещества в отличие от термодинамического можно описать при наличии
известных величин давления, температуры и объема. Эти три параметра связаны между
собой уравнением ...
Растворы и растворимость
Если в сосуд с водой поместить кристаллы поваренной
соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как
количество твердого вещества постепенно уменьшается. Пр ...