Определение полициклических углеводородов в сланцевой смоле
Библиотека / Библиотека / Определение полициклических углеводородов в сланцевой смоле Определение полициклических углеводородов в сланцевой смоле
Страница 2

Результаты и их обсуждение

Независимо от режима возбуждения спектры НЛ неразделенной сланцевой смолы при 77 К содержат очень сильный диффузный фон, маскирующий квазилинии индивидуальных полиаренов. Чтобы уменьшить погрешности, связанные с одновременным присутствием десятков структурнородственных полиаренов в пробе сложного состава (наложения линий разных компонентов, мощный фон и др.), необходимо предварительное фракционирование пробы, при этом важно выбрать минимально необходимую степень фракционирования.

Предварительное отделение асфальтенов и неароматических компонентов по известным методикам (например [2]) снижает фон, но без разделения суммы полиаренов не устраняет его в требуемой степени.

После разделения пробы на 5 фракций методом тонкослойной хроматографии на Al2O3 [3] спектры смол становятся значительно информативнее, фон снижается до приемлемого уровня даже без деасфальтизации. По нашему мнению, роль Al2O3 заключается не только в разделении суммы полиаренов, но и в частичном отделении окисленных ароматических соединений, которые при хроматографировании остаются на линии старта. Известно, что карбонил- и карбоксилпроизводные полиаренов дают диффузные спектры НЛ, и отделение их ведет к существенному повышению информативности спектров сложных смесей [6]. Фракционирование представляется необходимой стадией анализа, независимо от выбора последующих операций (как и в анализе нефтей).

Предварительное фракционирование существенно влияет на точность анализа. Так, найденное по методике Б содержание пирена без фракционирования было 0,12 - 0,13%, а суммарное содержание пирена во всех 5 фракциях составляло 0,23%. Это совпадает с данными, полученными в Москве по методике А. Более детальное фракционирование пробы (10-15 узких фракций) не изменяло далее этот результат. Аналогичные результаты получены и по другим соединениям. Следовательно, принятая нами глубина фракционирования сланцевой смолы необходима и достаточна.

Качественный состав проб. По методике А в сланцевой смоле было обнаружено 16 голоядерных полиаренов (суммарно во всех фракциях). Эти соединения содержат от 3 до 7 сопряженных циклов, некоторые из них (бенз[a]пирен и дибенз[а,h]антрацен), являются сильными канцерогенами. 12 соединений из этих 16 были опознаны ЭВМ и по методике Б. В каждой из фракций смолы было обнаружено от 3 до 8 полиаренов, некоторые структуры обнаруживались одновременно в двух и даже в трех фракциях, что может указывать на присутствие спектрально неразличимых соединений с разной хроматографической подвижностью (например, алкилированных и неалкилированных соединений с одним и тем же ароматическим ядром). Совпадение результатов качественного анализа смолы при двух принципиально различных способах идентификации подтверждает надежность метода. Расхождения по 4 компонентам (из 16) могли объясняться неодинаковыми пределами обнаружения соответствующих полиаренов в методиках А и Б: возбуждение при 337,1 нм для некоторых соединений малоэффективно.

Машинная обработка спектров, полученных по методике Б, позволила дополнительно выявить в сланцевой смоле 19 полиаренов (в основном алкилированных). Поиск таких соединений в методике А не предусмотрен, но в родственных объектах (каменноугольная смола и др.) они неоднократно обнаруживались. Среди дополнительно идентифицированных ЭВМ соединений также были сильные канцерогены, в частности, 20-метилхолантрен и метильные производные бенз[а]пирена. Если по методике А был опознан собственно тетрафен, то с применением ЭВМ были выявлены 4 его метильных производных, отличающиеся значительно большей канцерогенной активностью. Отметим, что надежность компьютерной идентификации алкилированных соединений несколько ниже, чем голоядерных. Это можно объяснить сходством (а следовательно, меньшей характеристичностью) эталонных спектров НЛ у соединений с тем же ароматическим ядром и разными алкильными заместителями или разным положением одного и того же заместителя [7]. Установить, какие именно алкилированные структуры присутствуют в подобных смесях, можно только с применением ЭВМ.

Страницы: 1 2 3

Смотрите также

Исторический обзор основных этапов развития хими
...

Окись этилена
Окись этилена является одним из наиболее крупнотоннажных продуктов органического синтеза, получаемых на основе этилена. Производные окиси этилена (гликоли и их эфиры, этаноламины, поверхнос ...

Cложные эфиры
...