Результаты и обсуждение
Страница 2

10.

Размер заархивированного файла и индекс Шеннона

Наибольший интерес представляют теоретико-информационные характеристики. Результаты представлены на Рис. 4.6.

Рис. 4.6. Зависимость индекса Шеннона (а) и величины Lв (в) от числа модификаций первичной структуры при различных значениях eP.

Оказалось, что в процессе эволюции происходит существенное снижение индекса Шеннона и размера сжатого файла, что представлено на рис. 4.6.

Такое снижение вызвано двумя факторами. Во-первых, это обусловлено увеличением средних длин петель. Во-вторых, это связано с возникновением длинного ²хвоста² (см. рис. 4.4.). Рассмотрим предельный случай. Предположим, что произошло полное вырождение сополимера. При этом образовалось плотное ядро и максимально длинный хвост из N=64 звеньев. Тогда такой сополимер можно представить как последовательность, состоящую из двух блоков: блок из 64-х единиц и блок из 64-х нулей. Если определить в этом предельном случае индекс Шеннона, то он будет равен нулю ( при использовании программы 28.2). Легко представить как будет архивироваться такая последовательность. В этом случае её можно сжать до 4-х байт ( в реальности 6-ти), хотя первоначальный размер составляет 128 байт. Можно видеть, что при возникновении длинного ²хвоста² значения индекса Шеннона и размера сжатого файла очень сильно уменьшаются.

Проанализировав рис. 4.2. – 4.6., можно предположить, что существует два режима эволюции структуры белковоподобного сополимера. Режим I – в этом случае образуется мицелоподобная структура. Режим II – происходит вырождение глобулы в «головастик». Чтобы определить границу между этими режимами, мы проводили следующую обработку данных.

Для того чтобы оценить скорость перехода ²глобула-головастик² введём характеристику Кэф, которая численно равна тангенсу угла наклона конечного линейного участка билогарифмических координатах зависимости рассматриваемых свойств LH, LP, Z, Lв, I. Подобные расчёты были проделаны для длин петель, длин хвостов, индекса Шеннона и размера сжатого файла. Результаты показаны на рис. 4.7.

Считая что в стабильном состоянии значение кэф стремится к нулю, можно оценить область стабильного состояния и область, где происходит вырождение глобулы. Из рис. 4.7. видно что для всех характеристик кэф близка к нулю при значении параметра eР » 0.2. Иными словами, для исследованной модели величина eР » 0.2 разграничивает области устойчивого и неустойчивого состояний. Таким образом при eР > 0.2 происходит образование устойчивой мицелоподобной структуры. При eР < 0.2 наблюдается вырождение глобулы и возникновение структуры типа ²головастик².

Рассмотрим зависимости величин индекса Шеннона и размера сжатого файла от энергетического параметра eР при t/t = 500.

Рис. 4.8. зависимости размера сжатого файла LB (a) индекса Шеннона I (b) от энергетического параметра eР (t = 1 млн. шагов интегрирования).

Из рис. 4.8. видно, что в режиме I при eР < 0.2 индекс Шеннона и размер сжатого файла более сильно зависит от энергетического параметра, чем в режиме II. Это связано с тем, что при eР < 0.2 происходит вырождение глобулы и образование структуры типа "головастик". Образование длинного «хвоста» ведёт к быстрому снижению значений этих характеристик. Напротив, в режиме II происходит увеличение длин петель. Поэтому зависимость теоретико – информационных характеристик имеет менее выраженный характер.

Страницы: 1 2