Модель и метод моделирования
Страница 2

При моделировании системы не включали частицы растворителя. Чтобы сымитировать эффект растворителя и эволюцию системы в контакте с термостатом температуры T, в уравнение движения Ланжевена добавляют некоррелированный член.

miFi = Fi –Гr + Ri , I = 1. 2, …, N (3.5)

где mi = 1 – масса мономерного звена, Fi = -Ñri H (r) - (r) – постоянная сила действующая на звена i, R описывает случайные броуновские силы, действующие на каждое мономерное звено, Г – учитывает вязкость растворителя. Величины R и Г связаны между собой флуктационной-диссипативной теоремой,

Rai(0)´Rai(t)ñ = 2ГikBTd(t), a = x, y, z, и обеспечивает постоянство температуры. Заметим, что если Г включить в уравнение без члена R, то система просто диссипирует. Параметр Г зависит от площади доступной растворителю поверхности (SASA). Чтобы найти значение SASA для данной конформации, производится аналитическое вычисление площади поверхности Ai для каждого заданного звена. Определив Ai можно найти Гi как Гi = Г0Аi/Amax , где Amax – максимальное значение площади поверхности доступной растворителю мономера для изучаемой модели и стандартное значение Г0 принимается равным единице. Весовой коэффициент Ai/Amax показывает степень подверженности растворителю мономера i. Если значение SASA для данного мономера равно нулю, то броуновская сила и сила трения равны нулю и уравнение Ланжевена (3.5) редуцируется в уравнение движения Ньютона. Обычно это происходит, когда звено расположено в ядре глобулы. Наоборот, мономерное звено, находящееся на поверхности глобулы, сильно сольватировано. Это значит, что значение Ai становится близким к Amax, следовательно значение Гi становиться близким Г0. Стандартная температура равна T = 1 e/kB. При интегрировании уравнения движения выбирается шаг интегрирования ∆t = sÖm/e , использовав численный алгоритм Верлета.

Страницы: 1 2 

Смотрите также

Химизм токсичности металлов
Отравления соединениями тяжелых металлов известны с древних времен. Упоминание об отравлениях «живым серебром» (сулема) встречается в IV веке. В середине века сулема и мышьяк были наиболее р ...

Характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера
Грандиозные масштабы производственной деятельности человека привели к большим позитивным преобразованиям в мире – созданию мощного промышленного и сельскохозяйственного потенциала, широкому ...

Введение
С давних лет человечество мечтает о лекарстве, которое при действии на организм обладало бы максимальной избирательностью, благодаря чему эффективно устраняется причина болезни, но не возникают неж ...