Дальнодействующие корреляции в белковоподобных сополимерах
Библиотека / Мутации структуры белковоподобного сополимера. Компьютерное моделирование / Библиотека / Мутации структуры белковоподобного сополимера. Компьютерное моделирование / Дальнодействующие корреляции в белковоподобных сополимерах Дальнодействующие корреляции в белковоподобных сополимерах

Рассмотрим корреляции между Н и Р звеньями вдоль белковоподобных последовательностей, которые сконструированы по схеме показанной на рис. .В самом деле, белковоподобные последовательности не являются случайными, такие корреляции должны существовать и важно знать, как изучить их исходя из одномерной первичной последовательности, без моделирования складывания цепи. Было показано при помощи как компьютерного моделирования, так и точных аналитических вычислений, что такие корреляции действительно существуют и кроме того имеют дальнодействующий характер.[21] Более точно они принадлежат к так называемой статистике полёта Леви. Это значит, что эффект памяти нативной конформации выражается через специфичные и нетривиальные статистики первичных белковоподобных последовательностей.

Анализ таких корреляций можно выполнить следующим образом. Нужно выбрать "окно" длинны L и двигать его вдоль сконструированной НР- последовательности. Число Н – звеньев в этом окне (hL)i является случайной переменной, зависящей от позиции i окна вдоль последовательности. Эта случайная переменная имеет определённое распределение. Её среднее <hL> определяется по всем по всей последовательности. Достаточно легко вычислить дисперсию этого распределения. [19]

DL ~ < [(hL)I - <hl>]2 >1/2 (2 .17)

Для полностью случайной НР – последовательности значение DL имеет зависимость от ширины окна L как L1/2. Зависимость DL ~ La, при a > ½ , явно показывает на существование дальнодействующих корреляций. В приложении 5 показана дисперсия DL для двух процедур модификации поверхности: ожнократное изменение поверхности и итеративный метод для N = 1024. Можно видеть , что для последовательности, полученной итеративным методом, кривая имеет больший угол наклона. Это означает, что дальнодействующие корреляции являются даже больше для этой последовательности, чем полученной первоначальным методом, описанным в статье [3]. Такое поведение DL может быть объяснено большей степенью блочности последовательностей, полученных при помощи итеративного алгоритма. В этом случае значение длины блока составляет примерно 10 звеньев, в то время как для не модифицированного первоначального метода она составляет около 8 звеньев. Можно легко понять такие изменения первичной структуры на количественном уровне: модифицированное мономерное звено становится более гидрофильным, поэтому существует тенденция к вытягиванию петель из глобулы. Это означает, что что следующие модификации будут более вероятно происходить в этой петле, что будет вести к увеличению длины блока. Сильные флуктуации величины DL при больших значениях L происходит из-за конечных размеров последовательностей. Самая верхняя кривая с тангенсом угла наклона равным 1 показывает поведение величины DL для максимально "неслучайной" последовательности (например для диблочного сополимера).

Смотрите также

Фторкаучук
Фторорганические каучуки, фторкаучуки- фторсодержащие полимеры обладающие каучукоподобными свойствами. Известны фторсодержащие каучукоподобные полимеры: 1.      &nbs ...

Обозначения.
Vп Мольный объем паровой фазы Vж Мольный объем жидкой фазы Sп Мольная энтропия паровой фазы Sж ...

Происхождение ископаемых углей
Практически невозможно установить точную дату, но десятки тысяч лет назад человек, впервые познакомился с углём, стал постоянно соприкасаться с ним. Так, археологами найдены доисторические ...