Белковоподобные сополимеры. Дизайн, структура, свойства
Библиотека / Мутации структуры белковоподобного сополимера. Компьютерное моделирование / Библиотека / Мутации структуры белковоподобного сополимера. Компьютерное моделирование / Белковоподобные сополимеры. Дизайн, структура, свойства Белковоподобные сополимеры. Дизайн, структура, свойства
Страница 2

В эксперименте используется цепь из N звеньев, состоящая из мономеров типа Н и Р (N = NН +NР), которые занимают ячейки в кубической решётке. Молекулы растворителя представлены как вакантные ячейки. Для моделирования используется стандартная модель с флуктуирующими связями. В этой модели считается, что каждое мономерное звено цепи занимает восемь соседних ячеек кубической решётки и длина связи может флуктуировать от 2 до Ö10. Каждая конфигурация цепи характеризуется определённой энергией короткодействующих взаимодействий U, которые определяются следующим образом. Во-первых, эффект исключённого объёма заключается в том, что если два мономерных звена занимают одну и ту же ячейку, то потенциальная энергия приравнивается бесконечности. Во-вторых, пусть nab - это общее число контактов между ближайшими соседними звеньями Н и Р или между мономерными звеньями и частицами растворителя S. Таким образом, U = åabeabnab , где eab - соответствующий энергетический параметр. Ясно такими параметрами, определяющие глобулярную организацию являются eРР, eНН, eРS, eНS, eНР. . В этой модели eРР = eНР = 0, также eРS < 0, eНS > 0, eНН < 0. Параметры eНН и eНS описывают гидрофобные взаимодействия между неполярными звеньями В и частицами полярного растворителя. Поэтому eBBnBB + eBSnBS – вклад гидрофобных взаимодействий в общую энергию системы. Таким образом общая энергия системы U = eBBnBB + eBSnBS + eASnAS. Так как физическая природа взаимодействий сходна, то |eРS| = |eНS| = |eНН|. Однако интенсивность этих взаимодействий различна. Это обусловлено тем, что максимальное число Н-Н контактов между соседними мономерами равно 26, в то время как максимальное число контактов между Н и Р звеньями с вакантными ячейками растворителя S равно 98. Поэтому вводим нормализующий фактор равный 26/98. В конце концов считали, eРS = -1, eНS = 1, eНН = -1 и определяли температуру как главный параметр системы. Время t выражено в шагах Монте Карло на мономерное звено.

Расмотрим следующие три модели цепи сополимера.

1. Соответствующая схема получения белковоподобных сополимеров включает следующие шаги. Берётся полимерный клубок и вводятся сильные взаимодействия между всеми звеньями цепи, в результате чего образуется гомополимерная глобула. Температура Т =1. NР = N/2 звеньям, которые имеют максимальное число контактов с частицами растворителя, приписывается индекс Р (гидрофильные). Остальным NН =N/2 звеньям, которые формируют ядро, приписывается индекс В (гидрофобные). Полученную первичную структуру можно охарактеризовать средними длинами непрерывных гидрофильных и гидрофобных участков (LР и LН) , а также специфическим распределением Р и Н звеньев вдоль цепи. Для получения гетерополимерной глобулы при данной температуре требуется (2-3)´106 шагов Монте Карло, после чего в течении 4´106 шагов рассчитываются средние характеристики. Такая схема дизайна многократно повторяется.

В эксперименте главный параметр – средняя длина Н блоков (L).

2. Цепь со случайным распределением Р и Н звеньев вдоль цепи характеризуется как случайная. В этом случае NР = NН и LР = LН = 2. Начальное конфигурация системы – гомополимерная глобула, которая при данной температуре приходит к равновесию после (2-3)´106 шагов Монте Карло.

3. Первичная структура случайно блочного сополимера характеризуется Пуасоновским распределением f(x) = e-l/x!, (x =0, 1, ., l > 0), где l = L. Также NР = NН = N/2. Начальное состояние системы – гомополимерная глобула. После наступления равновесия в течении 4´106 шагов рассчитывались характеристики системы.

Все результаты представлены для достаточно длинной цепи, состоящая из Т = 512 звеньев. Таким образом, для гетерополимера NН = NР = 256.

Страницы: 1 2 3