Гидродинамика ЖК.
Страница 1

Только что мы познакомились с упругими свойствами жидкого кристалла, сближающими его с твердыми телами. При этом обнаружились существенные отличия его упругих свойств от свойств кристалла как в качественном, так и количественном отношении. Теперь познакомимся детально со свойством жидкого кристалла, типичным для жидкости, — текучестью, изучением которой занимается наука гидродинамика.

Сразу следует сказать, что несмотря на солидный возраст гидродинамики, одной из древнейших научных дисциплин, и большие достижения, в этой науке существуют проблемы, не решенные до сих пор. К их числу относится проблема турбулентного, т. е. сопровождающегося нерегулярными вихрями, как в бурном потоке, течения жидкости. Эта проблема, находящаяся, кстати сказать, сейчас в центре внимания специалистов, не решена еще для самых обычных жидкостей, таких, как вода. А о полном описании турбулентного течения таких сложных сред, как жидкие кристаллы, пока что не идет и речи. Поэтому, говоря здесь о текучести жидких кристаллов, мы будем иметь в виду их спокойное течение, в котором нет нерегулярных вихрей, или, как принято называть его, “ламинарное течение”.

Ламинарное течение обычных жидкостей хорошо изучено. Основной характеристикой, определяющей течение в этих условиях, является вязкость, свойство жидко стей, всем хорошо известное на практике. Так, каждый, не задумываясь, скажет, что у воды вязкость небольшая, у смазочных масел гораздо больше, а у смолы—очень большая.

Вязкость характеризуется количественно коэффициентом вязкости т, который показывает, как сильно трение между соседними слоями текущей жидкости и насколько интенсивно передается движение жидкости от одной ее точки к другой (см. рис. 7). Именно из-за вязкости при течении жидкости по трубе ее скорость непосредственно на стенках трубы равна нулю, а в сечении трубы не постоянна, а возрастает по мере удаления от стенок, достигая максимума в центре.

Типичными задачами в течении жидкостей являются течение жидкости по трубе (например, нефтепродуктов в трубопроводе) и движение тела (например, шарика под действием силы тяжести) в жидкости. Понятно, что оба эти примера имеют непосредственное отношение к практическим задачам. Гидродинамика давно уже дала точное описание таких течений и, зная вязкость жидкости и давление, создаваемое насосными станциями, можно абсолютно точно рассчитать поток нефти в трубопроводе или скорость движения тела в жидкости. Для нас здесь важно то, что именно в таких условиях выполняют измерение вязкости жидкостей. В соответствующих экспериментах трубу заменяют капилляром, а движущееся тело шариком, падающим под действием силы тяжести в жидкости.

Течение жидкости в капилляре описывается законом Пуазейля, названным так в честь французского ученого, открывшего эту закономерность. В соответствии с этим законом количество жидкости, протекающей через трубу (капилляр), прямо пропорционально разности давлений на концах трубы, второй степени площади сечения трубы и обратно пропорционально коэффициенту вязкости. Скорость движения шарика в жидкости описывается законом Стокса, названного так по имени английского физика девятнадцатого века, современника Пуазейля. Эта закономерность гласит, что скорость движения шарика в жидкости прямо пропорциональна приложенной к нему силе и обратно пропорциональна радиусу шарика и вязкости жидкости.

Обратим здесь внимание читателя на то, что в девятнадцатом веке и ранее было часто принято многим установленным учеными соотношениям, даже не очень важным, давать громкое имя “закон”. В результате этой традиции появились приведенные выше термины — закон Пуазейля, закон Стокса и многие другие законы. Это не должно смущать читателя и вводить его в заблуждение при оценке значимости названных соотношений по сравнению со знакомыми ему со школьной скамьи фундаментальными законами, например, законами механики Ньютона или законами электромагнетизма Фарадея. Конечно, значимость соотношений, найденных Пуазей-лем и Стоксом, несравнима со значимостью фундаментальных законов Природы, а установившаяся здесь терминология—это просто дань времени. По современной практике вместо слова “закон” следовало бы употребить термин “формула”, т. е. формула Пуазейля, формула Стокса.

Страницы: 1 2 3 4

Смотрите также

Атомно-абсорбционный анализ
Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных ...

Расчет насадочной ректификационной колонны непрерывного действия по разделению смеси хлороформ-бензол
Задание на проектирование по теме «ректификация» Разделяемая смесь ...

Термоэластопласты
Термопластичные эластомеры (thermoplastic elastomers) – полимерные материалы, которые в условиях эксплуатации способны, подобно эластомерам, к большим обратимым деформациям, а при повышенных темпер ...