Методы исследования. Адсорбция кислотно-основных индикаторов
Страница 1

Полученные образцы анализировали индикаторным методом (адсорбции кислотно-основных индикаторов) с целью изучения изменений функционально-химического состава поверхности в зависимости от условий обработки. Данный метод основан на адсорбции кислотно-основных индикаторов с различными значениями величины рКа, характеризующей точку перехода между кислотной и основной формами индикатора (HInd  Ind- + H+), сопровождающегося изменением его окраски. При взаимодействии с поверхностью происходит частичная адсорбция индикатора на активных центрах с соответствующим значением рКа, приводящая к изменению интенсивности окраски, которое можно зафиксировать спектрофотометрически, что позволяет количественно охарактеризовать содержание активных центров адсорбции данного типа.

Предварительно были приготовлены водные растворы кислотно-основных индикаторов, имеющих разные значения рКа перехода между кислой и основной формами в интервале от –5 до 15. Характеристические значения рКа используемых индикаторов и длины волн, соответствующие максимуму их оптического поглощения, приведены в таблице 3.

Таблица 3 - Характеристики кислотно-основных индикаторов

Индикатор

рKa

макс., нм

Этиленгликоль

14,2

200

Индигокармин

12,8

610

Нильский голубой

10,5

640

Тимоловый синий

8,8

430

Бромтимоловый синий

7,3

430

Бромкрезоловый пурпурный

6,4

590

Метиловый красный

5,0

430

Бромфеноловый синий

4,1

590

Метиловый оранжевый

3,5

460

М-нитроанилин

2,5

340

Фуксин (основание)

2,1

540

Бриллиантовый зеленый

1,3

610

Кристаллический фиолетовый

0,8

580

о-Нитроанилин

0,3

410

п-Хлор-нитроанилин

0,9

330

Динитроанилин

4,4

340

В ходе эксперимента определяли оптическую плотность (D) растворов указанных индикаторов в следующих условиях:

1. К раствору индикатора, взятому в объеме Vind, в пробирках добавляли дистиллированную воду до 5 мл и после перемешивания измеряли оптическую плотность холостой пробы (D0).

2. К 5 мл раствора, полученного аналогично п.1, добавляли навеску исследуемого вещества массой m1  20 мг и после установления адсорбционно-десорбционного равновесия (через ~ 1 час) измеряли оптическую плотность (D1). При этом учитывалось изменение оптической плотности в результате как адсорбции индикатора поверхностью материала, так и взаимодействия исследуемого вещества с водой.

3. Навеску исследуемого вещества массой m2  20 мг помещали в дистиллированную воду объемом 3 мл и выдерживали в течение часа, давая возможность установиться адсорбционно-десорбционному равновесию между водой и поверхностью материала. После этого воду декантировали в другую пробирку, к ней добавляли раствор индикатора объемом Vind и доливали воду до 5 мл, после чего измеряли оптическую плотность (D2). При этом учитывалось изменение оптической плотности исключительно в результате взаимодействия исследуемого вещества с водой, что позволяло исключить этот фактор при сопоставлении результатов.

Индикаторы с наиболее низкими (как правило отрицательными) значениями рКа селективно адсорбируются на активных центрах основного льюисовского типа (содержащих неподеленную электронную пару и способных к диссоциативной адсорбции молекул воды с захватом протона). Далее по мере увеличения величины рКа индикаторов их селективная адсорбция происходит на бренстедовских кислотных (рКа ~0…7, поверхностные ОН группы с более высокой энергией связи элемент-кислород по сравнению со связью кислород-водород и соответственно тенденцией к отщеплению протона), бренстедовских основных (рКа ~7…14, поверхностные ОН группы с более высокой энергией связи кислород-водород по сравнению со связью элемент-кислород и тенденцией к отщеплению всего гидроксила) и льюисовских кислотных (pKa >~14, положительно заряженные ионы или атомы со свободной орбиталью, способные к диссоциативной адсорбции молекул воды с захватом гидроксила) центрах. Общая схема распределения кислотно-основных центров на поверхности приведена на рисунке 8 на примере твердого оксида состава АО.

Страницы: 1 2

Смотрите также

Введение.
Уравнение Ван-дер-Ваальса используется при исследовании процессов разделения и является базовым уравнением при качественном исследовании этих процессов. Распространение уравнения такого типа на мно ...

Глюкоза
...

Окислительно-восстановительные реакции
Цель работы: проведение качественных опытов, раскрывающих окислительные и восстановительные свойства отдельных веществ. Приобретение навыков составления окислительно-восстановительных уравне ...