Материалы с высокой диэлектрической проницаемостью. Диэлектрические полимерные материалы
Дипломы, курсовые и прочее / Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС / Дипломы, курсовые и прочее / Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС / Материалы с высокой диэлектрической проницаемостью. Диэлектрические полимерные материалы Материалы с высокой диэлектрической проницаемостью. Диэлектрические полимерные материалы

Полимеры с особыми электрическими свойствами находят все более широкое применение в толстопленочной электронике для создания функциональных слоев и композитов. Использование полимеров позволяет построить более гибкие, перенастраиваемые технологии, снизить себестоимость продукции. В частности, полимеры с высоким значением диэлектрической проницаемости используются при формировании конденсаторов а также электролюминесцентных источников света (ЭЛИС).

Выбор полимерного связующего для композитов, составляющих макроструктуру электролюминесцентного конденсатора, определяется требованиями к электрофизическим свойствам функциональных слоев.

Разработка новых высокомолекулярных соединений с высокой ε внесла бы существенный вклад в производство изделий пленочной электроники, конденсаторов, а также электролюминесцентных источников света [16, 17, 21].

Широко применяемые полимерные материалы характеризуются невысокими значениями , которые не превышают 1,5–4 [18]. Диэлектрическую постоянную полимера можно увеличить до 4–6 посредством его растворения в некоторых низкомолекулярных диэлектриках с большим значением ε. Это, однако, связано с повышением электропроводности и tg δ материала, что очень нежелательно [19].

Включение в основную цепь полимера боковых ответвлений с сильно полярными группами, например цианэтиловыми, увеличивает ε полимеров, чаще всего не понижая их других диэлектрических свойств [20].

Полимеры такого типа получают двумя способами:

- введением цианэтиловой группы в полимеры, имеющие реакционно-способные атомы водорода,

- полимеризацией или сополимеризацией мономеров, содержащих цианэтиловые группировки.

Важным классом полимерных материалов, обладающих высокими значениями диэлектрической проницаемости, являются цианэтиловые эфиры поливинилового спирта (ЦЭПС) общей формулы:

в которой х, у, w, z являются целыми числами, удовлетворяющими следующим условиям: w + x + y = 100, где 10 £ w £ 80, 0 < õ £ 30, 10 £ y £ 80, 0 < z £ 10.

ЦЭПС представляют собой сополимеры, получаемые посредством реакции цианэтилирования поливинилового спирта (ПВС) при взаимодействии с акрилонитрилом. Цианэтилирование катализируется щелочами, третичными аминами, алкоголятами щелочных и щелочноземельных металлов и др. Степень полимеризации зависит от свойств исходного ПВС и порой достигает до 105.

Наличие в ЦЭПС полярных функциональных групп –((CH2)2–CN), –ОН,

–C–O–С– обеспечивает при нормальных условиях высокие значения e =18-25 при tgδ 0,10-0,2, причем электрическая прочность пленок составляет 35-45 МВ/м [22-23].

Одним из перспективных направлений является создание новых композиционных полимерных материалов с высоким удельным энергосодержанием (более 105 Дж/м3) для высоковольтной импульсной техники. Такие материалы могут найти применение в качестве изоляции емкостных накопителей энергии, работающих на импульсном напряжении. Композиционные полимерные материалы для емкостных накопителей энергии должны обладать стабильными электрофизическими характеристиками в широком диапазоне частот внешнего электрического поля. Проблема заключается в том, что существенное повышение диэлектрической проницаемости композиционных полимерных материалов возможно при условии высокой степени полярности и совместимости составляющих его компонентов. Повышение полярности компонентов органического происхождения ведет к возникновению частотных областей дисперсии комплексной диэлектрической проницаемости, что обуславливает нестабильность характеристик самой полимерной матрицы. Введение мелкодисперсного наполнителя неорганического происхождения существенно модифицирует структуру и свойства композиционных полимерных материалов за счет межфазных взаимодействий и образования граничного нанослоя вблизи частиц наполнителя [24-28]. Это определяет особенности временнoго распределения локального поля в отдельных областях полимерной системы и частотной дисперсии эффективной комплексной диэлектрической проницаемости КПМ. В этой связи, при разработке КПМ необходимо иметь информацию о частотном спектре комплексной диэлектрической проницаемости самой полимерной матрицы и основных закономерностях изменения параметров спектра диэлектрической релаксации при введении в полимерную матрицу частиц наполнителя неорганического происхождения. В [29-30] показано, что применение пластифицированного поливинилхлорида (ПВХ) в качестве полимерной матрицы и материалов с высокой диэлектрической проницаемостью – сегнетоэлектрической керамики ЦТС-19 или диоксида титана TiO2 с размером частиц ~1 мкм. позволяет получать композиционные полимерные материалы с высоким удельным энергосодержанием (до 105 Дж/м3) в миллисекундном диапазоне длительностей фронта импульсного напряжения (τφ=5 .10 мс).

Смотрите также

Исследование совместного электровосстановления гадолиния и алюминия в галогенидных расплавах.
Из анализа литературных данных следует, что процесс электровосстановления алюминия из хлоридных и фторидных расплавов изучался в основном на платиновом электродах. Электровосстановление алюминия ...

Химические реакции. Реакции в растворах электролитов
...

Выводы.
1.                  Показано, что все исследованные способы модификации, СПИ белковыми компонентами,  позволяют п ...